- Charakteristika deduktívnej metódy
- Súčasťou univerzálneho princípu
- Nezakladá sa na experimentovaní
- Spolieha sa na logiku
- Je systematický
- Predstavuje začiatok hľadania znalostí
- Na čo slúži táto metóda?
- kroky
- Stanovte všeobecnú zásadu, ktorú treba zohľadniť
- Uplatnite príslušné dedičné zákony
- Uveďte konkrétne návrhy
- Potvrďte alebo odmietnite ponuku
- Vytvorte príslušné zákony
- Druhy deduktívneho zdôvodnenia
- - Zákon o odlúčení
- Príklady zákona o odlúčení
- - Zákon sylizmu
- Príklady sylogizmov
- - Protireverzný zákon
- Príklady právnych predpisov o vzájomnosti
- Príklady deduktívnej metódy
- Referencie
Deduktívne metóda je druh uvažovania, v ktorom začnete od univerzálnosti k dosiahnutiu konkrétne závery. V deduktívnom zdôvodňovacom procese je možné dospieť k logickým záverom zo skutočností alebo z dôvodov; to znamená, že to vyplýva. Ak sú fakty / predpoklady pravdivé, záver bude platný.
Príklad použitia deduktívnej metódy je: 1 - Všetci ľudia sú živé bytosti (prvá premisa). 2-Albert Einstein je muž (druhá premisa). 3-Preto je Albert Einstein živou bytosťou (záver).
Príklad deduktívnej metódy
Túto metodiku používali Gréci v staroveku; Z tohto dôvodu je známa ako prvá vedecká metóda. Tento postup má však určité vlastnosti, ktoré bránia tomu, aby sa považoval za úplne pravdivý.
Tí, ktorí to tvrdia v súvislosti so deduktívnou metódou, poukazujú na to, že je možné vyvodiť konkrétne scenáre z univerzálnych princípov, ale to neznamená, že prvé sú pravdivé.
Z tohto dôvodu sa informácie zozbierané počas vyšetrovaní, ktoré sú založené na deduktívnej metóde, musia neskôr potvrdiť prostredníctvom iných mechanizmov.
Charakteristika deduktívnej metódy
Deduktívna metóda je široko používaná vo formálnych vedách. Zdroj: pixabay.com
Súčasťou univerzálneho princípu
Prístupy, ktoré sú generované deduktívnou metódou, majú svoj pôvod vo všeobecnom vyjadrení.
Táto metodika sa vyznačuje tým, že ide od naj všeobecnejšej po najšpecifickejšiu, pretože jej hlavným účelom je posúdiť možnosť uplatňovania univerzálnej zásady v konkrétnom prostredí.
Nezakladá sa na experimentovaní
Táto metóda je čisto teoretická. Z tohto dôvodu nezakladá svoje štúdie na pokusoch alebo iných akciách, ktoré majú laboratórium ako prostredie.
Je to metodika s oveľa argumentačnejším a prediktívnejším prístupom, so zvláštnym uplatnením v takzvaných formálnych vedách, tých disciplínach, ktorých základné znalosti sú jasne racionálne a abstraktné.
Spolieha sa na logiku
Logika a abstrakcia sú prvky, ktoré charakterizujú deduktívnu metódu. Logika je v skutočnosti spôsob, akým sa vytvárajú argumentačné štruktúry, ktoré umožňujú predstavenie konkrétnych scenárov založených na všeobecných zásadách.
Je systematický
Deduktívna metóda sa vykonáva prostredníctvom série dobre štruktúrovaných a definovaných procesov. Toto poradie v aplikácii je nevyhnutné na získanie užitočných výsledkov.
Predstavuje začiatok hľadania znalostí
Vďaka deduktívnej metóde je možné získať informácie o možných konkrétnych scenároch, ktoré by sa mohli vytvoriť z pojmov univerzálnej povahy.
Z tohto dôvodu sú pozorovania generované v tejto oblasti v mnohých prípadoch východiskovým bodom pre otvorenie nových línií vo výskume a testovaní.
Na čo slúži táto metóda?
Vďaka deduktívnej metóde je možné formulovať teórie a zákony uplatniteľné na konkrétny kontext. Vychádzajúc zo všeobecného princípu je možné predvídať tieto osobitné zákony, ako aj povahu ich vplyvu na určité scenáre.
Podobne deduktívna metóda umožňuje extrapolovať všeobecné priestory. Preto sa závery, ktoré sa vyvodia z tohto procesu, používajú na predpovedanie správania alebo charakteristík hypotetického scenára, ktorý sa generuje priamo zo všeobecného základu.
To znamená, že vďaka tejto metóde je možné generovať hypotézy, ktoré sa potom môžu vyvinúť pri špecifických vyšetrovaniach. Jedným z dôvodov, prečo je táto metóda relevantná, je to, že vedie k novým poznatkom a novým študijným smerom.
Na druhej strane je možné pomocou deduktívnej metódy testovať hypotézy. Z tohto dôvodu je táto metóda široko používaná pri potvrdzovaní alebo popieraní možných hypotéz vo vedeckom výskume.
kroky
Stanovte všeobecnú zásadu, ktorú treba zohľadniť
V deduktívnej metóde prvá akcia zodpovedá výberu univerzálnej premisy, od ktorej začneme. Táto úvaha musí byť úplne pravdivá a platná, musí to byť nepopierateľná realita a čo najširšia.
Je nevyhnutné vychádzať zo všeobecnej zásady, ktorá je úplne spoľahlivá, inak bude ohrozený celý proces odpočtu, ktorý sa uskutoční v nasledujúcich krokoch, čo znamená, že výsledok pravdepodobne nebude platný.
Aby sme lepšie ilustrovali tento prvý krok, použite nasledujúci všeobecný príklad: „Diana je žena“.
Uplatnite príslušné dedičné zákony
Pri prechode medzi všeobecným predpokladom a konkrétnou vetou je potrebné mať druhý predpoklad, ktorý musí byť tiež úplne reálny a preukázateľný.
Táto druhá úvaha zohľadňuje prvok súvisiaci so všeobecnou zásadou a spája ju s inou zásadou, ale má to súvisieť so záverom, ktorý sa má dosiahnuť. Príkladom môže byť vyhlásenie: „všetky ženy sú ľudské bytosti.“
Uveďte konkrétne návrhy
Po určení obidvoch vyhlásení bude ďalšia fáza odpočítavacej metódy predstavovať konečný záver, ktorý sa musí skonštatovať v pravosti oboch predchádzajúcich priestorov, obidvoch všeobecnej povahy.
Ak použijeme príklady, ktoré sme opísali, na ilustráciu predchádzajúcich fáz, konkrétnym návrhom by bolo „Diana je ľudská bytosť“.
Potvrďte alebo odmietnite ponuku
Po dosiahnutí špecifického predpokladu založeného na všeobecných zásadách je potrebné overiť pravdivosť tohto tvrdenia. Ak to nie je pravda, musí sa to zamietnuť a priestory sa musia pestovať iným spôsobom.
Vytvorte príslušné zákony
Keď už bolo overené, že konečný návrh má súdržnosť, platnosť a pravdivosť, je možné tieto znalosti prekonať prístupom zákonov alebo teórií.
Tieto zákony majú za úlohu definovať scenáre, ktorých charakteristiky sú uvedené v presvedčivom predpoklade. Týmto spôsobom je možné, aby bol transcendentný.
Druhy deduktívneho zdôvodnenia
- Zákon o odlúčení
Urobí sa jedno vyhlásenie a navrhne sa hypotéza (P). Záver (Q) je odvodený z tohto tvrdenia a jeho hypotézy:
- P → Q (podmienené vyhlásenie)
- P (navrhuje sa hypotéza)
- Q (záver je odvodený)
Z tohto dôvodu možno povedať, že:
- Ak uhol vyhovuje 90 ° <A <180 °, potom A je tupý uhol.
- A = 120 °
A je tupý uhol.
Príklady zákona o odlúčení
- Ak je môj brat 19 rokov a moja sestra má 21 rokov a ja som starší ako môj brat a mladší ako moja sestra, mám 20 rokov.
- Ak je v mojej rodine päť ľudí a 3 z nich sú ženy, potom dvaja sú muži.
- Ak musím kúpiť 100 čokoládových vanilkových koláčov a už mám 60 čokoládových koláčov, chýba mi 40 vaniliek.
- Ak je súčet všetkých uhlov v trojuholníku rovný 180 ° a ja mám dva uhly po 30, potom tretí uhol bude 120 °.
- Zákon sylizmu
V tomto zákone sú stanovené dva podmienečné argumenty a záver sa vytvára kombináciou hypotézy jedného argumentu so záverom druhého. Napríklad:
- Ak je Pedro chorý, nechodí do školy.
- Ak Pedro nechodí do školy, bude mu chýbať domáca úloha.
Takže ak je Pedro chorý, bude mu chýbať domáca úloha.
Príklady sylogizmov
- Všetky ženy sú krásne.
- Claudia je žena.
- Claudia je krásna.
- Niektoré cicavce plávajú.
- Obávam sa zvierat, ktoré plávajú.
- Niektorí cicavce ma vydesia.
- Páči sa mi všetko, čo obsahuje čokoládu.
- Koláč má čokoládu.
- Mám rád koláč.
- Žiadny človek nemôže lietať.
- Jaime je ľudská bytosť.
- Jaime nemôže lietať.
- Všetci psy vedia štekať.
- Lucas je pes.
- Lucas vie, ako štekať.
- Každú nedeľu som ospalý.
- Dnes je nedeľa.
- Dnes som ospalý.
- Elektrické autá sú drahé.
- Renault uviedol na trh elektrický automobil.
- Auto Renault je drahé.
- Všetky planéty majú jadro.
- Saturn je planéta.
- Saturn má jadro.
- Vo všetkých mestách Peru je horúco.
- Lima je mesto v Peru.
- V Lime je horúco.
- Protireverzný zákon
Tento zákon uvádza, že pokiaľ je záver nesprávny, potom musí byť aj hypotéza nepravdivá. Príkladom tohto zákona by bolo:
- Ak prší, na oblohe nie sú žiadne mraky.
- Na oblohe nie sú žiadne mraky, takže prší.
Príklady právnych predpisov o vzájomnosti
- Ak sa smeje, je smutná.
- Je smutná, potom sa smeje
- Ak prší, zápas sa zruší
- Zápas bol zrušený, takže neprší
- Keď som v strese, veľa jedím.
- Nie som v strese, takže nejem veľa.
Príklady deduktívnej metódy
- José je chlapec.
Všetky deti sú ľudské bytosti.
José je ľudská bytosť.
- Na výstavbu sú potrebné plány.
Budova je stavba.
Na vytvorenie budovy potrebujete plány.
- Voda sa namočí.
Carolina bola v kontakte s vodou.
Carolina je mokrá.
- Losos je ryba.
Ryby žijú vo vode.
Losos žije vo vode.
- Ak sa dotknete ohňa, zhoríte.
Pedro sa dotkol ohňa.
Pedro bol spálený.
- Ľudia, ktorí nosia okuliare, majú ťažkosti s videním.
Cristina nosí okuliare.
Cristina má ťažkosti so zrakom.
- Ak je Antonio chorý, bude neprítomný. Ak Antonio nie je prítomný, bude mu chýbať jeho práca v triede. Antonio chýba, preto stratil prácu v triede.
- Ak prší, na oblohe sú mraky. Na oblohe nie sú žiadne oblaky, preto neprší.
- Každý, kto jej mrkva, je quarterback. Juan jej mrkva. Juan je preto quarterback. (Tu vidíte slabinu dedukčnej metódy).
- Vzácne plyny sú stabilné. Neón je vzácny plyn, preto je neón stabilný.
- Tento pes vždy šteká, keď je niekto pri dverách. Pes nešteká, takže pri dverách nie je nikto.
- Nikto nežil viac ako 122 rokov. Ľudské bytosti teda zomierajú pred dosiahnutím 122 rokov.
- Všetky kravy sú cicavce. Trina je krava. Takže Trina je cicavec.
- Všetky ženy v mojej rodine majú vysokoškolské vzdelanie. Teta Cintia nás navštevuje. Teta Cintia má vysokoškolské vzdelanie.
- Zelenina je zdravá. Mrkva je zelenina. Mrkva je teda zdravá.
- Mexičania jedia korenené. Nora je mexická, takže Nora jej je korenená.
- Cicavce cicajú svoje mláďatá. Mačka sať mačiatka, preto je mačka cicavec.
Referencie
- „Indukčná metóda a deduktívna metóda“ v Plataforma E-ducativa Aragonesa. Zdroj: 9. novembra 2019, Plataforma E-ducativa Aragonesa: e-ducativa.catedu.es
- Dávila, G. "Induktívne a deduktívne uvažovanie v rámci vyšetrovacieho procesu v experimentálnych a spoločenských vedách" v Redalycu. Zdroj: 9. novembra 2019, Redalyc: redalyc.org
- Vogel, M. „Deduktívna a indukčná metóda v rámci vedeckej metódy“ v informačnom paneli. Načítané 9. novembra 2019 z informačného panela: tabladecomando.com
- Prieto, B. „Použitie deduktívnych a indukčných metód na zvýšenie efektívnosti spracovania digitálnych dôkazov“ v Pontificia Universidad Javeriana. Citované z 9. novembra 2019 z Pontificia Universidad Javeriana: magazines.javeriana.edu.co
- „Deduktívna metóda“ v Junta de Andalucía. Zdroj: 9. novembra 2019 z Junta de Andalucía: juntadeandalucia.es
- Bradford, A. „Deduktívne uvažovanie vs. induktívne uvažovanie “v Live Science. Získané 9. novembra 2019 od spoločnosti Live Science: livescience.com
- Doyle, A. „Definícia a príklady deduktívneho zdôvodnenia“ v kariére rovnováhy. Záznam z 9. novembra 2019 z kariéry rovnováhy: thebalancecareers.com